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p};'osphon_lslmen;_dggntiu altering Pb to a chemically less mobile phase is 2 promising strategy based on minimizing

riskiand improving time and cost efficiency. This study eval
aqueous Pb in response to reaction time, solution pH, and Pb concentration) Batch experiments were conducted.

-available crystalline hydroxya atite (HA), and two poorly-crystalline hydroxyapatites synthesized from gypsum
inciéeri:tég ‘ {ﬁ?ﬁs\@é[\gﬂA

ted crystalline.and poorly-crystalline hydroxyapatite sor-

JAPoorly-crystalline hydroxyapatites had greater capacity for Pb removal from
¢ hydroxyapatite. The maximum sorption capacity of Pb determined by the
was 500 mg g~' for CHA, 277 mg g ! for MHA and 145 mg g~ for HA. Removal of aqueous Pb by CHA was not

ation pH; with a 98.8% reduction throughout the solution pH range of 2-9, whereas aqueous Pb removal by HA
H-dependent with less removal'in the neutral solution pH. Poorly-crystalline hydroxyapatites may provide an effective
existing remediation technologies for Pb-contaminated sites.

inetics; Sorption isotherm; Heavy metal; Phosphorus amendment; Apatite; Immobilization
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ion can ‘often be found:at shooting ranges

sradation-of natural-veghtdL-
- *{PbGQﬁ,—g&hﬂ&-{P—bS}--&ﬂd-ﬁthHﬁe*{-PbO). Scheckel and

‘based on minimizing ecotoxicological risk and improving
time and cost efficiency (Vangronsyeld et al., 1995). .«
Phokphorus-containing ameéndments have been used for
immobilizing PH/in soil and water, The effect of Pb immo-
bilization by phosphorus is based.on the rapid Kinetic for-
mation ‘of géochemically Stable Pb-phosphates such as
pyromorphite. Traing and Laperche (_1299) reported that

Pb-phosphates are at'least 44 orders of magnitude less solu-
ble than -Mmgﬁbmmmmﬁ&gmrum

Ryan (2002} found that- pyromerphite- formed- through- a-
rapid ~kinetic—reaction -equilibrating within 244 and
-was-stablein-an acid sotution:-Becausé of a high immobili-

zation effect; phosphorus amemdments such as hydroxy-

apatite [Cas(PO4);OH] and rock phosphate [primarily

Cas(PQ4)3F] have been examined for reducing environmen-

tal risk and metal bioavailability (Zhang et al. 1998;

Mavropoulos et al., 2002: Cao el al., 2004). Geebelen

et al. (2002) reported that a 1% (w/w) hydroxyapa-

ite amended to a Pb contaminated soil (1000 mgkg™")




: hoth the biomass production of lettuce and
le Pb- .
patite and rock phosphate have been exten-
for their kinetics and chemical reaction with
compounds readily form pyromorphite that
her chloropyromorphite or hydroxypyromorph-
on aqueous pH and available ions (Chen
Mechanisms proposed for Pb immobilization
atite are cation exchange, formation of Pb-
after dissolution of hydroxyapatite, and surface
Suzuki et al. (1984) proposed that the cation
substitution of Pb for Ca in hydroxyapatite
i be a predominant mechanism in removal of
b, This mechanism has been revised by Ma
and Xu and Schwartz (1994) who proposed that
of hydroxyapatite and subsequent precipitation
hite were responsible for the aqueous Pb
se studies concluded that the efficacy of aque-
oval by hydroxyapatite was controlled by the
oxyapatite dissolution, eventually affecting the
omorphite precipitation. Additionally, Mavro-
2002) reported that cation exchange and dis-
d precipitation could not fully explain the
of aqueous Pb removal by hydroxyapatite,
hesized that surface complexation could be
entire immobilization mechanism. |
-produced hydroxyapatites as well as com-
vailable hydroxyapatites have been examined
orption capacity of heavy metals in soil and
ed methods and procedures for synthesizing
tite in a laboratory were generally based on
ion of Ca and PO, supplied as Ca(OH);
5, respectively (Eanes et al.. 1965: McDowell
. Although the laboratory-produced hydroxy-
an almost equivalent quality to that of com-
ailable hydroxyapatite in terms of Ca/PQy
n and crystallinity, these chemicals used for
tite synthesis are relatively expensive. To over-
ost issue, Furuta et al. (1998) proposed the use
waste provided from a ceramic industry and
phosphate for the material of hydroxyapatite
in the laboratory. The proposed method
d industrial byproducts for synthesizing
te was found to be cost-advantageous and
tential for remediation of soil and water con-
However, the mechanism and reaction on
removal by byproduct-based hydroxyapatite
understood because their physical and chemi-
lies are complex and different from pure
te (e.g. pH, purity, crystallinity). The objec-
5 study was to evaluate the crystalline and
alline hydroxyapatite sorbents on removal of
b in response to reaction time, solution pH,
“Oncentration. Based on these studies, we investi-
Possible mechanism for Pb removal by poorly-
droxyapatites in comparison to a crystalline
tite,
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2. Materials and methods
2.1. Preparation of hydroxyapatite sorbents

Three hydroxyapatite sorbents were prepared for this
study. A pure hydroxyapatite (HA) was obtained from
Taihei Co. Ltd., Japan. Two poorly-crystalline hydroxyap-
atites were synthesized by referring to the modifications of
method described in Furuta et al. (1998). Two different Ca
materials used were: gypsum waste provided from a ceramic
industry (CHA), and incinerated ash of poultry waste
(MHA). The X-ray difiraction (XRD) analysis (Cu K« radi-
ation at 40 kV and 20 mA, step-scanning at 0.02° 20 s™')
confirmed thal the gypsum waste was mainly composed of
CaSO, and trace residues of Si materials (data not shown).
For the elemental compositions of incinerated poultry
waste, 0.2 g of sample placed into Teflon vessels was digested
with 5 ml of concentrated HNOj; and 2 ml of concentrated
HCL )The filtered and diluted solution was analyzed by
ICP-QES and determined the following elemental concen-
trations: Ca (348 gkg™'), PO, (81 gkg™'), Mg (28 gkg™")
and other residual elements (Fe, Al and Mn). The gypsum
waste (50 g) and incinerated poultry waste (100 g) were
passed through a 2 mm mesh sieve and each material was
agitated in a 0.5 M diammonium hydrogen phosphate solu-
tion in a 1| glass hydrothermal reactor at 90 °C for 24 h,
After the hydrothermal treatment, obtained solids were
washed with distilled water and dried at 50 °C. According
to the XRD spectra (Fig. 1), the HA exhibited characteristic
peaks for hydroxyapatite whereas the characteristic peaks of
CHA and MHA were broad or slightly shifted, indicating
that these were composed of poorly-crystalline hydroxyapa-
tite relative to the HA. All sorbents used in the following
studies were passed through a 105 pm mesh sieve.

2.2. Kinetic reaction Study

Kinetic reaction of Pb removal by three hydroxyapatite
sorbents was examined by a batch experiment. A 0.100 g of
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Fig. 1. XRD pattern of original HA (a), CHA (b) and MHA (c). The
values represent d-spacing (nm) of hydroxyapatite.
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. corbent was added to 40 ml of 5 mM KNOj solution
gining @ Pb concentration of 1000 mg 1™" prepared by
: )2. The initial pH of the solution was adjusted to
alue of 5.0 by adding a2 minimum amount of 0.01 M
. The suspension was shaken on a horizontal sha-
¢ different time intervals from 5 to 180 min at room
erature (20 °C). Suspensions passed through a filter
were analyzed for Ca and Pb concentrations by
absorption spectroscopy.

s Sorption isotherm study

A batch experiment was conducted to determine Pb
n isotherm for three hydroxyapatite sorbents. Each
(0.100 g) was added to 40 ml of 5 mM KNOj solu-
ntaining different levels of Pb prepared from
),. The initial pH of the solution was adjusted to
e of 5.0 by adding 0.01 M of KOH or HNO; solu-
fter 24 h of equilibration on 4 horizontal shaker at
emperature (20 °C), the saumples were centrifuged
rpm for 5 min. Suspensions passed through a filter
were analyzed for Ca and Pb concentrations by
absorption spectroscopy. The Langmuir adsorption
1 was used for modeling the sorption characteristics
for each sorbent. The linear form of the Langmuir
lel is given as the following equation:

- keb

{1+ o)

re77is the'amount of Pb sorbed (mg g™'); k is the Lang-
odel constant (1 g™); ¢ is the equilibrium concentra-
of Pb (mgl™'); and b is the maximum sorption
ity of Pb (mg g~'). After the batch experiment, the
apatite sorbents used for 1000 mg Pb 1™ concen-
were collected and washed with deionized water.
-dried samples were analyzed by XRD to examine
anges of peak spectra after the reaction in the Pb
Under the experimental conditions considered
(initial Pb concentrations 200-1500 mg ™' with
KNO; solution at pH 5), a thermodynamic model
MINTEQ, ver. 2.50) computed that 100% Pb was
d as a form of Pb*™ (95+1%) and PbNO]
%), and the value of saturation indices associated
Pb-complexes was negative. These predictions rein-
d the fact that the sorption isotherm experiment was
ed using solutions that Pb precipitation did not
I prior to adding sorbents.

PH-Dependent sorption experiment

ther batch experiment was conducted to determine
ion capacity in different pH levels ranging from 2
initial solution was composed of 1000 mg Pb 1!
M KNOs, and the solution pH was adjusted by
either KOH or HNO; solution. After 24 h of equil-

on a horizontal shaker al room temperalure
%) the samples were centrifuged at 6000 rpm for
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5 min after which the final solution pH was measured. Sus-
pensions passed through a filter paper were analyzed for Cx
and Pb concentrations by atomic absorptiop spectroscan:.
The,_ppint of zero charge (pHp,.) was déletitined by -==
mo ion of Smiciklas et al. (2006) with 5 mM KNO.
solution whose initial pH was adjusted ranging from 2 1o S
After 24 h of equilibration, the final pH of the suspensior.
was measured, . =
EquiliBrium modeling was pépf'ﬁtr“ned by a tgr%{ﬁdy-
namic program, Visual MI Q ver. 2.50 (KTH, Stock-
holm, Sweden) to compare the results ‘of our batch
experiment with various possible prr&l'ﬁﬁ?nes Eh;at may con-
trol Pb solubility] The input data for modeling were chosen
from the samples with an initial pH value of 3 (acid). 6
(neutral) and 9 (alkaline) for all sorbents. Solution condi-
tions (pH and Ca, PO,, and Pb concentrations) were based
on the result from the final equilibrium state in the back-
ground of the 5 mM KNOj; solution. The saturation index
(SI) representing the degree of saturation with respect to a

-specific-Pb sotid phase is-defined as

SI = log IAP —log K,

where IAP is the ion activity product and K, is the solubil-
ity product constant. If —1 <SI <0, the solution is satu-
rated with respect to the solid; if SI < —1I, the solution is
@g@a@ with respect to the solid; and if ST > 0,
the solufion is supersaturated with respect to the solid
(Essington. 2004).

3. Results and discussion
3.1. Sorption kinetics

A rapid kinetic reaction of Pb removal by all sorbents
occurred within the first 5 min (Fig. 2). The aqueous Pb
concentration at 5 min decreased to 747mg ™' by HA.
527mgl~' by MHA, and 117mg1™" by CHA. Our find-
ings on the rapid kinetic reaction of HA and synthesized
HA agreed with those described elsewhere (Aklil et ul..
2004: Prasad and Saxena, 2004; Chaturvedi et al.. 2006).
A kinetic behavior of Pb removal for HA was similar to
that for MHA. In contrast to HA and MHA., CHA had
a greater rate of aqueous Pb removal and removed 99%
aqueous Pb within 120 min.

The aqueous Ca concentration for CHA and MHA rap-
idly increased within the first 15 min, and the dissolution
reaction reached equilibrium (Fig. 2). The molar ratio
(Cayotution/Pbrumovi) for these sorbents showed a similar
trend, i.e. increasing up to 15 min, and it then gradually
decreased for MHA or becume constant for the CHA
(Fig. 2). Contrarily, the behavior of Ca dissolution for
HA was more complicated. The agueous Ca concentra-
tion und Ca/Pb molar ratio for HA fluctuated in the first
30min and became constant at 120 min. Mavropoulos
et al. (2002) and Furuta et al. (2000) also reported a similar
result regarding the fluctuation of the Ca/Pb molar ratio
during the kinetic reaction of hydroxyapatitc with aqueous
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pendent concentration of aqueous Pb, Ca and Ca/Pb
hydroxyapatite sorbents at pH 5.

¢ hydroxyapatite dissolution and Pb-apatite pre-
is the predominant mechanism in the aqueous
‘the value of the Ca/Pb molar ratio should
01 (e.g. Ma ct al.. 1993). Our results suggest that
al of aqueous Pb could be partially associated
'mechanisms (e.g. surface complexation) besides

dissolution and Pb-apalile precipitation.
/Pb molar ratio was unstable within the first
all sorbents, surface complexation may be a
hanism for the removal of aqueous Pb by
during the initial reaction period.

ion isotherm

i4d the greatest removal of aqueous Pb followed
HA. Removal of aqueous Pb by all sorbents
d until sorption reaction reached equilib-
facteristics of Pb removal by sorbents can be
¥ell by the Langmuir model (Fig. 3), confirming

Y. Hashimoto, T. Sato | Chemosphere 69 (2007) 1775-1782

0 200 400 600 800 1000 1200
- Equilibrium concentration (mg | M

A%

Fig. 3. Conccnlratiun-depldgul sorption isotherm of Pb for the three
different sorbents delermined at a solution pH value of 5. Sorption
isotherms of all sorbents were predicled by Langmuir equation.

the agreement between the theoretical model and our
experimental result. The maximum sorption capacity (b)
of Pb determined by the Langmuir model was 500 mg g~
for CHA, 277 mg ¢~ for MHA, and 145 mg g~' for HA.
Suzuki et ul. (1982) examined aqueous Pb removal by com-
mercial and laboratory-produced hydroxyapatites and
found that laboratory-produced (poorly-crystalline) HA
removed a greater amount of aqueous Pb (230 mg a )
than the commercial (crystalline) HA. The Langmuir con-
stant (k) for Pb sorption isotherm was 0.051g" for HA,
0.701g™" for MHA, and 0.831g™" for CHA, which corre-
sponded to the increased order of maximum sorption
capacity (b). Our result also demonstrated that poorly-crys-
talline CHA and MHA had greater Pb sorption capacity
than HA.

Removal of Pb by these sorbents was also explained by
XRD spectra pattern (Fig. 4) and SI predicted by the MIN-
TEQ model. The XRD spectra pattern showed that forma-
tion of hydroxypyromorphite (HYP) appeared to be most
enhanced in CHA followed by MHA and HA. For CHA
and MHA. the original peaks of XRD spectra became
unclear. and new peaks of HYP appeared. According to
the MINTEQ model predicting potential Pb-precipitates
and their SI value, the solution for CHA treatment was
supersaturated with regard to HYP (SI = 1.57) and under-
saturated with regard to hydroxyapatite (SI = —4.43).

Fig. 4. XRD puttern of HA (1), CHA (b) and MHA (c) after the reaction
with 1000 mg 1~" Pb solution. The values represent d-spacing (nm) of
hydroxypyremorphite.




2
. ings of__ttjlc MINTEQ_ _{;nLodel indicate that
ite dis'édkl\llinn and squ;é'quent HYP forma-
ed in the solution with CHA, in agreement
sult of the XRD spectra (Fig. 4). For MHA,
n was satiirated ‘with respect to HYP and
tite (ST =0). For HA spectra after equilibra-
\of HYP)were less. intense than 'that of
MHA, and the original peak@(gf _hydra;cyapatite)
ed) The MINTEQ model computed that equi-
i concentration of HYP was greater in MHA
than in HA (0.127 mM), suggestingthat the
MHA would have more potential for solids
Jated, in agreement with the clearer XRD
p. The XRD peak characteristics and MIN-
ons suggest that limited dissolution-precipita-
would odcut in a solution with HA, which
a smaller Pb sorption capacity of HA as com-
o CHA and MHA.' Parks (1990) reported |that
stalline materials had more reactivity than crys-
. with the same chemical composition. There-
sreater sorption capacity of CHA and MHA may
{by _thei pgg%i,r-crystalline hydroxyapatite

t proceeded rea ly.in the hydroxyapatite-Pb
i-precipitation reaction.

tiction (of solution, was observed for all sor-
he initial Pb concentration increased (Fig. 5).
erence of solution pH values between the lowest
and the highest (1500 mg I~!) initial Pb con-
2.20 for HA, 1.30 for CHA, and 2.99 for
results of pH reduction were found in Pb
dies employed with a natural apatite (Cuao
Prasad und Saxena. 2004). The range of pH
smaller in CHA than in the other sorbents.
at CHA had a greater pH buffering power
1 of the others. Oald v s

T400 600 800 1000 1200 1400
Pb concentration ( mg1'")
incentration-dependent pH of Pb solution treated with three

sorbents. Error bars represent standard deviation of mean
tes.
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3.3. Effect of pH on Pb sorption

Removal of aqueous Pb by CHA was not dependent on
solution pH while Pb removal by HA and MHA were influ-
enced (by solution pH) CHA, had 98.8% reduction of aque-
ous Pb concentration throghout the solution pH tested
herein (Figa. 6). HA showed almost 100% Pb removal in
the solution with & pH value of 2, 3 and 9, but over
500 mg Pb I”' remained in the solution with a pH value
of 4 to 7. Qur result corresponded to Suzuki ct al. (1984)
who reported|\that Pb removaliby HA was maximized in
the acidic solution) A 99.9% reduction{of Pb) was found

\by MHA’@ the solution\with a pH of 2—4.and a pH of

8-9)In the solution with pH 5-7, the r(g;}iihing aqueous
Pb concentration \for MHA) increased from 55 to
345 mg1~!, but these values were less than that of HA!in
the same pH range. These results indicate'that CHA and
MHA have a greater Pb removal capacity than HA with
a wide pH range.”,

A primary mechanism for Pb removal by HA isl based
on the reaclign&hat dissolltion(of HA lib¥rates phos\iﬁﬁi{te
{for the sub&quent precipitation) (of Pb as pyromorphite
(Ma et al.. 1993 Xu and Schwartz, 1994). As indicated

800 4

s & 8

Pb concentration (mg I”')

(=]
M

800 4

—8— CHA
—O— HA
—¥— MHA

400 A

200 -

Ca concentration (mg 17')

O -

2 3 4 5 6 s 8
Initial pH
Fig. 6. pH-dependent concentrations of aqueous Pb and Ca in solution

treated with three difierent sorbents. Error bars represent standard
deviation of mean with two replicates.
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jon indices (S1) for three hydroxyupatite sorbents reacted in different pH solutions

I‘_'_, ation index Sorbent and initial solution pH (pH;)
il HA CHA MHA
Acid Neutral Alkaline Acid Neutral Alkaline Acid Neutral Alkaline
5.16 5.13 843 5.69 6.94 9.30 §.37 7.54 10.90
0 0 0 157 -7.74 -1L17 187 ~16.49
- -3.14 =0.32 0 -0.15 0 0 0 0 0
0 -0.94 -1.03 =1.00 0 -6.21 —8.49 0 -12.04

ed aquegus Ca concentration) all sorbents
adily di'#ﬁ: ved in an acid pH'than in an alka-
6). The reduced aqueous\Pb concentratiof in
solutioni was attributed to increased sorbent
leading to Pb-apatite precipitation for all sor-
meutral to alkaline pH, the dissolution{of
A still occurred, as indicat y the aqueous
ion (80-400 mg 1™")| whereas HA dissolution
ed (<30 mg Ca I™"). Therefore, low s& y
neutralto alkaline solution .can be a factor
formation (of Pb-apatite p "&Yﬁitates) which
us Pb removal;é\lthough the apatite solubil-
dependent on pH with a lower solubility at

Zhang and Ryan. 1998), both CHA and
wed a higher solubility as compared to HA.
were more readily diSsblved than crystalline
sse CHA and MHA were a poorly-crystalline
atite (Fig. 1) with a weak structure of their crys-

d by Chen et al. (1997), formation of new
: ii&]‘déﬁon_ﬂbf dissolved HA with agqueous

ir SI were predicted by the MINTEQ model
e solutions/of HA were saturated with HYP
in all initial pH (pH;) ranges: The Pbs(POs),
tion) in HA solution) with acid pH;, and
'e saturated in the neutral’ and alkaline

rend(in SI values was found/in CHA and
4 neutral and alkaline pH;. In the neutral

(SI>1). Laperche et al. (1996) reported’ that
lion was enbfdriced in a neutral to slightly acid
MINTEQ prediction showed a value of SI > 0 in
ind neutral pH; ‘for all S}rbents} suggmﬁnﬁt{hat
nd neutral solutions,_r: ther than the alkaline
Was favorable for HYP)formation and predipita-
ution of all sorbents was saturated with

'ﬂ]%ai line pH;.

% cofpléxation by hydroxyapatite' is also an
*Mechanism) in removing aqueous Pb. Qur, result
it removal of aqueous Pb)generally induced an
% pH; values, typically for CHA and MHA
£Cording to Ma et al. (1993), however, pH varia-

nt on the solution pH. Potential Pb-precipi- *

alkaline indicate the initial pH value (pH;) of 3, 6 and 9, respectively. The SI values of Neutral for MHA were predicted by using the date
an overflow computation error of the MINTEQ program.

. x L
oAb &
tion does not occur if the mechanism of aqueous Pb removal
(by hydroxyapatite)is.controlled by séquential dissolutionfof
hydroxyapatite and'Pb-apatite precipitation. The pH varia-
tion found herein suggested [that other surface complexes
may be involved in the overall Pb removal mechanism.

All hydroxyapatite sorbents examined herein had a
good pH buffering capacity (in initial pH values of 4-9
(Fig. 7). Smiciklas et al. (2000) also reported|that a low-
crystalline hydroxyapatite synthesized from Ca(OH), and
H3PO, had high pH buffering capacity. If the hydroxyapa-
titg dissolution and Pb-apatite precipitation are the pre-
dotifnant mechanism(in the aqueous Pb removal, the pH
value in the presence of Pb (pHpp) should be buffered 10
the pH,,,; when the reaction between Pb and sorbent is

" completed (Smiciklas et al., 2006). Wu et al. (1991)

reported the following surface reactions of hydroxyapatite
in solution:

=CaOH; <= =CaOH’ + H*
=PO" + H" <=> =POH" .
A0 ]

When the pH; value was acidic or below pHyj,, proton-
ation (of sutface complexes increases the positively-charged
CaOHj and neutral POH? sites. As a result, the surface of
the sorbend is pet positively charged,\Increased net positive
charge is less rable in complexing Pb*7 on the sorbent P
surface than the net negative charge ‘that becomes domi- *
nant §bove pH,.JOur result of Pb removal by HA showed

(that the difference between the pHpy, and H ;. values

lion of CHA and MHA was supersaturated  increased.in a pH; range of 4-6.(Fie. 7) where a high aque-

ous Pb concentration was also observed (Fig. 6). Thus,

increased net positive charge(of the hydroxyapatite surface |
'in this pH range'may be another cause of reducedﬂ Pb

removal; Although a considerable difference between pHp,

and pHp,, was tundfor MHA with a pH; range of 5-7
(Fig. 7), the aqueous Pb concentration of MHA was lower
than that of the HA (Fig. 6). This could be explajned by the
ﬁ’éﬁtrapto alkaline pHpyfor MHA] which may erhance the
formation(of Pb(OH), precipitate and reduced aqueous Pb
concentration. For CHA, the value of pHpy, and PHpz: was
closer than(that(of the other sorbents/in the acid to neutral
pHj, and the pHp, value exceeded pHp,J in the neutral
to alkaline solutions (Fig. 7). Based (on this pHpy,~pH ;.




HA

Initial pH

7. Initial and final pH values of solutions with 500 mg Pb 1" (filled
 and KNO; inert electrolyte (open symbol) for HA, CHA and
A Sorbents.

4 iy
it) aqueous Pb removal by CHA may involve a surface
blexation mechanism to some exient as well as a disso-

M-precipitation mechanism described previously.
Yonclusions '.Jf/]'l]f-'\.,

tudy suggested that a poorly-crystalline hydroxy-
had greater capacity (for Eg)\ mova.l)( from a
ftion/with a wider pH range as compired to a crystal-
' hydroxyapatite. The aqueous Pb concentration
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(1000 mg1™") at S min was reduced to 747 mg 1" by HA,
527mg1™" by MHA, and 117mg 1" by CHA. The maxi-
mum sorption capacity of Pb determined(by the Langmuir
model was 500 mg g ' for CHA, 277 mg g~ for MHA and
145mg g~' for HA. Removal of aqueous Pb by the CHA
was not dependent on solution pH, with a 98.8% reduction
throughout the solution pH range of 2-9, whereas aqueous
Pb rcmova](by HA and MHA) was pH-dependent with less
removal in the neutral solution pH. Similar to HA, a pri-
mary mechanism (o ueous Pb removal) y (.E A and
MHA)cou;El be sequential hydroxyapatite diskorfu on and
Pb prmﬁfﬁtation. The XRD spectra showed a-clearer peak
characteristic of pyromorphite)in CHA and MHA than in
HA reacting in the 1000 mg Pb I™' solution with a pH value
of 5.)@nhanced formation (of pyromorphite)could be
associated with a high solubility of CHA and MHA, which
proceeded (in the dissolution-precipitation | reaction. By
considering pH variation during the reaction and pH differ-
ence between pHpy and pHp,.. surface complexation by
hydroxyapatite sorbents may be considered one of the
sorption mechanisms as well as ion exchange and precipita-
tion, although quantification of each contribution in an
overall sorption mechanism was still unclear,

Our study demonstrated that poorly-crystalline hydroxy-
ap‘-.;rt'i;tg could, E:igg\me a new competitor to other exi 'ng;fj‘-,;jf
commercial athendments for the remediation of Pb-ca‘i&"m'
inated shooting ranges in terms of cost and Pb-removal effi-
ciency. Further considération should be addressed on the
Sﬁﬁnxﬁ: amount gf g%;ﬁii ation to c%f_n; inated '$ifds to
maximize Pb imﬁ‘gﬁﬂization and mifiimize detrimental -ﬁlﬁ,\
impacts ‘when using a phosphorus-containing amendment.
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Removal of aqueous lead by poorly-crystalline hydroxyapatites

FERERRIET N2 A ML BMIBIRDRR =

phosphorus amendment in altering Pb to a chemically less mobile phase is a promising strategy based on minimizing
k and improving time and cost efficiency. This study evaluated crystalline and poorly-crystalline hydroxyapatite sor-
of aqueous Pb in response lo reaction time, solution pH. and Pb concentration. Batch experiments were conducted
ly-available crystalline hydroxyapatite (HA), and two poorly-crystalline hydroxyapatites synthesized from gypsum

d incinerated ash of poultry waste (MHA). Poorly-crystalline hydroxyapatites had greater capacity for Pb removal from
b a wider pH range as compared 1o a crystalline hydroxyapatite, The maximum sorption capacily of Pb determined by the
del was 500 mg g~' for CHA. 277 mg g~ for MHA and 145mg g™ for HA. Removal of aqueous Pb by CHA was not
solution pH, with a 98.8% reduction throughout the solution pH range of 2-9, whereas aqueous Pb removal by HA

dependent with less removal in the neutral solution pH. Poorly-crystalline hydroxyapatites may provide an effective
ng remediation technologies for Pb-contaminated sites.

d. All rights reserved.

tics; Sorption isotherm; Heavy metal; Phosphorus amendment: Apatite: Immobilization
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d phosphate (CP) has been employed in our laboratories as a heterogeneous catalyst in a variety of reactions. In this study, CP was
as a new product for removal of heavy metals from aqueous solution. Removal of Pb**, Cu?*, and Zn?* on the CP was investigated
experiments. The Kinetic of lead on CP adsorption efficiency and adsorption process were evaluated and analysed using the theories

and Freundlich, The influence of pH was studied. The adsorption capacity obtained at pH 5 were 85.6,29.8, and 20.6 mgg~! for
* and Zn**, respectively. We hypothesize at PH 2 and 3, the dissolution of CP and precipitation of a fluoropyromorphite for lead
tion of solid-solution type fluorapatite for copper. The results obtained show that CP is a good adsorbent for these toxic heavy
¢ abundance of natural phosphate, its low price and non-aggressive nature towards the environment are advantage for its utilisation

de: Natural phosphate; Adsorption; Heavy metal; Langmuir isotherm; Freundlich isotherm

introduction

5t decade, more attentions are deployed to remedy

ination of surface water, groundwater and soil
metal jons from metal plating industries, aban-
sal sites and operating mining sites. In fact,
of heavy metals in water supplies may cause
. s on health, environmental toxicity, corrosion
per works and affect the aesthetic quality of the water
From an environmental protection point of
vy metal ions should be removed at the source in
avoid pollution of natural waters and subsequent
nulation in the food chain. In this way, many
h as, precipitation, cementation, sedimentation,
%, Ccoagulation, flotation, complexing, solvent ex-
» membrane separation, electrochemical technique,
i€l process, reverse osmosis, ion exchange and, ad-
: “an be used for the removal of toxic heavy metals

ding author. Tel.: +212 61 46 48 19; fax: 212 22 24 96 72.
* s.sebti@univh2m.ac.ma (S. Sebti).
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from wastewaters. All these procedures have significant
disadvantages, which are for instance incomplete removal,
high-energy requirements, and production of toxic sludge or
waste products that also require disposal. Recently, several
solids have been used as new adsorbents such as, biomass
[1-3], activated carbons [4-6], wool [7), fishbone apatite
[8], polymers [9-11], silica [12,13], zeolites [14—16], and
clays [17,18]. More recent work has recognised the impor-
tance of ion(s) exchange properties of the apatites in a va-
riety of areas..Nriagu [19-21] suggested the application of
phosphate as an in-situ method to control hazardous quan-
tities of Pb. Ma et al. [22-24] shown that hydroxyapatite
(Caj0(PO4)s(OH)) effectively immobilized aqueous Pb in
the presence of elevated concentrations of anions (NO3~,
C1~, F~, SO4*7) or cations (A13+, Cd?+, Cu?*, Fe?t,
Ni**, or Zn?*), which may be present in Pb-contaminated
soils. Sugiyama et al. reported the ion exchange of various
strontium hydroxyapatite [Srjo(PO4)s(OH),] with diva-
lent cations [25], the ion exchange of Pb2t and CI— into
calcium hydroxyapatite from aqueous solution [26], the
properties of barium hydroxyapatite [Bajo(PO4)s(OH);)
for ion exchange with Pb?+, Cu?t, Zn?t, Cd**, and Co?+




¢ and the immobilization of Pb(IT) ion by B-Ca3(PO4)2,
004-2H20 and Ca(H2P0O4)2-H,0 [28].

laboratory, we have recently shown that calcined
¢ (CP) can be used as a basic or acid heterogeneous
for several reactions. For example, CP has been used
alysis of Knoevenagel reaction [29], Friedel-Crafts
tion [30], alkenes epoxidation [31], flavanones synthe-
and Claisen=Schmidt condensation [33,34].

al. [35] shows the effectiveness of phosphate rock
bilizing Pb from aqueous solutions in order to reme-
contaminated soils. In this work, we present the use
removal the toxic heavy metals as Pb(II), Zn(1I),
. The adsorption kinetics of metals and pH effect
igated. The adsorption capacity was compared for
heavy metals. Langmuir and Freundlich adsorp-
erms have been determined and the mechanism
has been discussed.

faterials and methods
; antary phosphate

‘ sphate rocks exist under several mineralogical classes
n general, apatites are by far the most abundant [36].
rapatite Cayo(PO4)sF> is the major natural apatite min-
ding the partially carbonated or hydroxylated vari-
[he more commonly observed substitutions are those
T jons by Na™, KT, Mg?*, Co?t, Fe’t, APY, ...,
43t jons by VO43+, SO42~, CO32~, MnO4™, ..., and
£~ by OH™ or Cl™. These different substitutions pro-
ortion—ions of the crystal lattice that depend on
and the volume of substituting. The apatites in
rocks are poorly crystallized and their composi-
iffers considerably from a pure apatites. Their chemi-
ity and thermal stability vary—widely as a result,
pending on the degree of isomorphic substitution of car-
& for phosphate in the fluorapatite crystal lattice. In
the solubility of phosphate rocks increases with an
Base in carbonate substitution.

sphate treatments and characterization

sphate rock used here comes from an extracted ore in
ga, Morocco. The fraction of 100400 p.m grain size
hed with water, calcined at 900 °C for 2 h, washed
cined 4t 900 °C for 0.5h and ground (63—125 pum).
cture of calcined phosphate (CP) is similar to that
patite, as shown by the X-ray diffraction pattern
spectroscopy. The chemical composition was deter-
: Ca (54.12%), P (34.24%), F (3.37%), Si (2.42%),
), C (1.13%), Na (0.92%), Mg (0.68%), Al (0.46%),
%), K (0.04%), and others metals in the range under

% specific surface area of CP was determined by the
 ethod from the adsorption—desorption isotherm of ni-
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trogen at its liquid temperature (77 K) (Coulter SA 3100).
The total pore volume was calculated by the BJH method
at P/Py = 0.98. The CP shows a very low surface area
(1-2m? g7!) together with a low total pore volume (Vi
= 0.007 cm®g~'), The pore size distribution is detailed in
Table 1. It is then rather surprising that this calcined natural
phosphate has a very high catalytic activity as we have shown
in several organic reactions [29-34]. The basic properties of
CP have been determined by the adsorption of phenol on
phosphate at 25°C as: 616 pmolg™" (1 h); 898 pumolg~!
(2h), and 2066 xmol g~' (24 h). The acidic properties have
been demonstrated in the Friedel-Crafts reaction [30].

2.3. Batch experiments

Aqucous solution containing heavy metal ions at various
concentrations, were prepared from metal salts. Lead nitrate
[Pb(NO3)2], copper sulphate [CuSOQ4 5H,0] and zinc sul-
phate [ZnSO4 7H; 0] were chosen for their easy solubility
in water. Adsorption experiments for the kinetic study were
conducted as follows: 0.1 g of CP were suspended in 200 mL
of lead solutions containing 50mgL~" of lead and the so-
lution pH was adjusted to 5.0 with 0.1 M HCI and 0.1M
NaOH. The suspensions were stirred for the appropriate time
(see Fig. 1).

Adsorption experiments for the effect of solution pH
were conducted as follows: 0.1 g of CP were suspended in
100 mL of lead solutions containing 100mg ™! of lead or
50mgL~" for both Cu?* and Zn?*. The pH of the solution
was adjusted to 2-6. The suspensions were stirred for 2 h.

Adsorption isotherm studies were conducted by adding
0.05g of CP to a 100mL of a metal solution with vari-
ous concentrations. The initial metal concentrations were
10-150mgL~"! and the suspensions were stirred for 2 h.

The solid phosphate was filtered through a 0.45 ppm mem-
brane filter (MFS). The filtrates were diluted as required to
remain within the calibration linear range and metal concen-
trations were determined by GBC 908PBMT atomic absorp-
tion spectrophotometers. All XRD analyses were conducted
with Bruker Dg Advance diffractometer, using monochrom-
atized Cu Ka radiation at 35 kV and 20 mA. Measurements
were made using a step-scanning technique with a fixed

Table ]

Adsorption BIH pore size distribution

Pore diameter range (nm) Pore volume (ceg™') Percentage
Under 6 0.00167 24,02
6-8 0.00070 10.00
§-10 0.00047 6.77
10-12 0.00040 578
12-16 0.00044 6.30
16-20 0.00035 507
20-80 0.00138 19.81
Over 80 0.00155 2225
BJH 1ol 0.00696 100.00
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8

Lead adsorbed (mg/g)
5 3

her 0.04'. A total of 701 data point were obtained
50°. All XRD analyses were performed using
d, randomly oriented mounts,

and discussion
':!,_‘,'. [

ption of Pb** onto calcined phosphate is pre-
as a function of contact time from | min to
32mg g~ adsorbed in about 5 min followed
dsorption upon further increasing the contact
tion between CP and lead is rapid, requir-
materiel “setup”.

wal of P>, Cu*t and Zn*t by calcined

L

determination of adsorption characteristics of
and Zn?* ions in the CP, the initial con-
of the metal ions were varied between 5 and
vhile the dry phosphate weight of the adsor-
tconstant at 0.5gL™" at pH 5. The amount of
unit mass of CP was evaluated by using the
ssion:

©) x V/m

888™") is the amount of adsorption per unit mass
and C are the concentrations (mgL~!) of the
I the initial solution and in the aqueous phase
B0t for certain period time, respectively; ¥ (mL)
f the aqueous phase; and m (g) is the amount
Fig. 2 shows the relationship between the dif-
iies of metal ions adsorbed per unit mass of

I 0.5 g/L of 50 mg/L CP
20°C
of-u )
i 1 i 1 1 i 1 i 1 " 1
1] 20 40 B0 BO 100 120
Time (min)

Fig. 1. Kinetic curve of lead sorption on CP ([Pb**] = 50mgL~"!, (amount of CP = 1gL~! and pH 5).

CP and the equilibrium concentration of the metal ions at
room temperature for the residence time of 2 h. For differ-
ent heavy metal ions, at higher metal ion concentration the
driving force was greater, forcing the solution to reach equi-
librium easier. This indicates that the calcined phosphate
has a high affinity for the metals studied and that these are
completely adsorbed from dilute solutions, From the ex-
perimental data, the proportion of adsorbed mass varies in
the order Pb?* (85.7mgg™!) > Cu?* (29.8 mgg~') > Zn2+
(20.6 mgg™"). However, the mole proportion varies in the
order Cu?* (0.47 mmol g~ > Pb?* (0.41 mmol g~!) > Zn?+
(0.32mmol g™"). This order is similar to that reported by
Sugiyama et al. for ion exchange with divalent ions using
barium hydroxyapatite [27], or strontium hydroxyapatite and
calcium hydroxyapatite [25], but different from that reported
by Suzuki [37].

3.3. Langmuir isotherm

The experimental data have been generally fit by the Lang-
muir model: an equilibrium model able to identify chemical
mechanism involved. The Langmuir equilibrium equation is
represented as:

(D

where C. (mgL™!) is the equilibrium concentration, g,
(mgg™') is the amount of adsorption per unit mass of CP
at equilibrium, gmex is the amount of adsorbate adsorbed
per unit mass of CP corresponding to complete monolayer
coverage and K, is the Langmuir constant, which can be
considered as a measure of adsorption energy. A linear plot
of (C./q.) against C, was employed to give the values of
gmax and K1 from the slope and intercept of the plot. These
parameters, together with the correlation coefficient (), of
the Langmuir equation for the adsorption of different metal
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0 10

jon isotherm constants for lead, copper and zinc

K (Lg™) gmax (mgg™") 7

0.284 89.29 0.9995
0371 3215 0.9997
0.148 23.70 0.9979

to CP (Table 2) show that the Langmuir equation
good fit to the adsorption isotherms.

eundlich isotherm
reundlich isotherm is the earliest known relationship

sorption equilibrium. This fairly satisfactory
therm can be used for non-ideal sorption and
by the following equation:

e @)
is conveniently used in the linear form by
logarithm of both sides as:
. 1

undlich isotherm constants for the adsorption of

and Zn** onto CP were determined using
mination of the data (Table 3) shows that the
isotherm is a good description of the data for
ions over of the concentration range studied.
% tie values of the correlation coefficients indicate

3 Somtion isotherm constants for lead, copper, and zinc

K (mggHdm mg)/" 1 =

47.761 0.1405 0.9690
9.809 0.3547 0.9744
4.972 0.3999 0.9776

0 ) m
C, (mg/L)

Fig. 2. Isotherms of the adsorption of lead, copper, and zinc onto CP (amount of CP = 0.5 gL~ and pH 5).

that the results obtained with Langmuir isotherms are better
than those obtained with Freundlich isotherms.

3.5, Effect of pH and mechanism of phase metal-CP

3.5.1. Effect of initial pH

The effect of pH on the metal uptake of the different
metal ions on CP is a very important parameter. The con-
centration of the metal ions uptake from the single metal
ion solution was examined for changing pH values. The
metal uptake (mgg™") for changing pH values are shown
in Fig. 3. In this study, Pb?* ions are the most adsorbed
at all pH studied, Cu®* and Zn?* are the least to be taken
up. The maximum adsorption capacity for copper and zinc
were found to be at pH value between 4 and 6. At pH be-
low 3, uptake of copper and zinc were negligible, probably
do to the competition effects with ion H3O%. The uptake
of lead increased when pH increased from 3 to 5. At pH 6,
adsorption of Pb?* decreased probably because of chemical
precipitation. At pH below 3, uptake of lead increased with
the increase of ions H30% in solution. The hypothesis of
dissolution of calcined phosphate seems to be viable at pH
below 3. The most suitable pH values for a maximum up-
take of the metal ions studied were found to be 5-6 for both
copper and zinc, and 5 for Pb(II). The metal ion uptakes at
these pHs were 14.26 mgg™! for Cu(ll), 12.83mgg™" for
Zn(IT), and 84.80mgg~"! for Pb(II).

3.5.2. Mechanism of Pb-CP

Reaction of CP with HO at pH 2, 3, 4, and 5 in the ab-
sence of added Pb** or Cu®* served as a blank (Fig. 4). The
XRD patterns of the reaction products of aqueous Pb with CP
are presented in Fig. 5. Fluoropyromorphite [Pbo(PO4)sF2]
was formed in the presence of CP at pH 2 and 3 (Fig. 5A and
B). At these pHs CP was detected, indicating that the CP had
dissolved. The absence of any XRD-detectable Pb-minerals
at pH 4 and 5 (Fig. 5C and D) suggested other mecha-
nisms such as adsorption or formation of poorly crystalline



1
4

stalline solids. Ma et al. [22] have suggested that
ation by hydroxyapatite in the presence of F~
through fluorapatite [Ca;o(PO4)sF2] dissolution
Y TOMm rphi!.e preeipital.ion.
et al. [38] suggested two general mecha-
the ability of hydroxyapatite to take up divalent
first is adsorption of ions on the solid surface
by their diffusion into hydroxyapatite and the re-
ons originally contained within hydroxyapatite
change mechanism), and second is dissolution
apatite in the aqueous solution containing di-
ons followed by precipitation or coprecipitation
ution-precipitation mechanism).
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adsorption of lead, copper, and zinc on CP at different pH ([Pb2*] = 100mgL~", [Cu?*] = [Zn**] = 50mgL~", and amount of CP = 1gL™"),

Similarly, we propose, at pH 2 and 3, that dissolution of
CP and precipitation of fluoropyromorphite is the primary
mechanism for Pb removal by CP, which can be expressed
as:

Cao(PO4)6Fz + 6H U580 102+ 4 3H,PO,~ + 2F~

(4)
10Pb2* + 6HaPOy~ +2F~ PPN b 0 (PO4)6F2 +6H
(5)

Through mechanism such as adsorption and precipitation

Intensity (arb. units)

as other Pb minerals are also possible. It is significant to
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that the relative solubility of Pb compounds in-
lead phosphates are more stable under ambient
conditions than lead oxides, hydroxides, car-
sulfates [39,40]. So, the fluoropyromorphite,

1 surface conditions, can be a phase immobilising

IMAIT tedwastes.

mism of Cu-CP

patterns of the reaction products of aque-
CP are presented in Fig. 6. No evidence

hases containing Cu?t was detected after reac-

P with this cation at any of the initial pH. The

p : Carbonate fluoropyromorphite
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same results have been found by Sugiyama et al. [27]
for exchange with this cation using barium hydroxyap-
atite. These authors [41] reported that the mechanism for
jon-exchange of Cu?* by strontium hydroxyapatite may
not proceed through dissolution-precipitation mechanism
(compared to ion-exchange with Pb2¥), resulting in the
formation of solid-solution type hydroxyapatite but not
that of copper hydroxyapatite. Based on a result of Fig. 3
which shows a removal of Cu?* ions by CP, we can sug-.
gested that the Cu-CP was a solid-solution-type apatite like
Cayg—-xCuy(PO4)6F2 at pH 2 and 3, but not Ca;o(PO4)sF2 +
Cuyo(PO4)sF2.

unmarket peaks : CP

Intensity (arb.units)
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q (mgg=')  Reference
ned phosphate 85.6 This work
hatic clay 372 [42]

g0 waste 46.64 [43]
illium chrysogenum 74.59 [44]
overticillium cinnamoneum 7044 [44]

103.07 [45)

d phosphate 29.8 This work
waste 12.42 [43]
m chrysogenum 8.89 [44]
overticillium cinnamoneum 12.7 [44]
12.48 [45]

ed phosphate 20,6 This work
ic clay 251 [42]
m chrysogenum 1111 [44]
ticillium cinnamoneum 915 [44]
husks 13.08 [46]
«d carbon 3L (47

arison berween our results and related

fsorption capacities of some adsorbents and cal-
ate for removal of Pb?*, Cu?t, and Zn2™ are
le 4. For lead, the CP has a greater capacity
hatic clay [42] and sago waste [43], comparable
um chrysogenum and Streptoverticillium cinna-
, and slightly lower to peat [45]. For copper, the
acities found in this work were significantly
orted elsewhere [43—45]. For zinc, the CP has
than Penicillium chrysogenum and Strep-
cinnamoneum [44] and Peanut husks [46], and
r to phosphatic clay [42] and activated carbon
dent that the sorption affinity of calcined phos-
b2+, Cu?*, and Zn?* is comparable or more
able adsorbents.

..
usions

udy showed that calcined phosphate can be used as
Orbent capable to remove several toxic metals such
1I), and Zn(1I). The adsorption of the metal ions
librium in 3 min. The adsorption experimental
se heavy metals are in a good correspondence
nuir and Freundlich isotherms. The adsorp-
of the investigated cations are 85.6, 29.8, and
for Pb?+, Cu?*, and Zn?*, respectively. The

a principal mechanism of metal removal by
The dominant mechanism, at pH 2 and 3, was
lution of CP and precipitation of a fluoropyro-
lead and the formation of solid-solution type
& for copper. The comparison of adsorption ca-
* Calcined phosphate used in this study with those
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obtained in the literature for removal of Pb2*t, Cu*, and
Zn’* shows that the activity of our solid is equivalent or
superior to that of other available adsorbents. These results
are to favor the diversity in applications of CP in protec-
tion of our invaluable environment by removing toxic heavy
metals. The abundance of natural phosphate, its low price,
its non-aggressive nature towards the environment and the
results obtained in this study, classifies the calcined natu-
ral phosphate as a new competitor of the some well-known
adsorbents for wastewater clean up.
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Removal of heavy metals ions from water by using calcined phosphate as a new adsorbent
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phosphate (CP) has been emploved i our laburatories as o heterogencous catalystina vanety of reactions. In thus study, CP was
as u new product for removal of heavy metals from agueons solution. Removal of PhE*, Cu®* . and Za'* on the CP was investigated
hexpenmunts. The kmetic of lead on CP adsorption etliciency and adsorption process were evaluated and analysed vsing the theones
imuir and Freundlich The influence of pt was studied | he adsorpuon capacity obtamed at pllSwere 856, 29 8. and 20 6me g ' for

and Zn*", respectively We hvpothesize at pH 2 and 3. the dissolution of CP and preciptation of a fluoroperomorphite for lead
ormation of suhd-solution type fluorapatite for copper The results obtamed show that CP s a good adsorbent for these toxte heavy
The abundance of natural phosphate. its low price and NON-ApEressive niture Is the env are advantage for its utihisation
of view of wastewater and wastes clean up,
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prepared hydroxyapatite/polyurehthane (HAp/PU) composite foams with two different HAp contents of 20 and 50 wi.% and investigated
emoval capability of Pb** fons from agueous salutions with various initial Pb?* ion concentrations and pH values of 2-6. HAp/PU composite

ynthesized exhibited well-developed open pore structures which provide paths for the aqueous solution and adsorption sites for Pb?* jons.
increasing the HAp content in the composites, the removal capability of Pb** ions by the composite foams increases owing to the higher
pacity, whercas the removal rate is slower due to the less uniform dispersity of HAp in composite foams. The removal rate of Pb**
lower with increasing the initial Pb** ion concentration in aqueous solutions. The removal mechanism of Pb* ion by the composites is
pending on the pH value of aqueous solution: the dissolution of HAp and precipitation of hydroypyromorphite is dominant at lower pH
dsorption of Pb*" ions an the HAp/PU composite surface and ion exchange reaction between Ca** of HAp and Pb?* in aqueous solutian
nt at higher pH 5-6, and two removal mechanisms compete at pH 4. The equilibrium removal process of Pb*” ions by the HAp/PU
oam at pH 5 was described well with the Langmuir isotherm model, resulting in the maximum adsorption capacity of 150 mg/g for the

ds: Adsorbent; Composite foam; Heavy metals; H ydroxynpatite; Polyurethane

A

_l_J gduction

y metal ions exist in wastewater of many industries such
plating facilitics, mining operations, agricultural activ-
‘The presence of toxic heavy metal ions in industrials
has generated considerable concem in recent years,
toxic heavy metal ions which present potential dan-
luman health are copper, lead, cadmium, and mercury.
metals are not biodegradable and tend ro accumu-
g organisms, causing various diseases and disorders.
the removal of hazardous heavy metals in wastewater
d much attention in recent years, Traditional methods
Boval are chemical precipitation, ion exchange, filtration,
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electrochemical treatment, and reverse osmosis. In the last few
years, adsorption has been showed to be an alternative method
forremoving dissolved metal ions from wastewater. Great efforts
have been contributed to develop new adsorbents such as hydrox-
yapatite, activated carbons, biomass, silica gels, zeolites, clays,
carbonaceous, and synthetic polymers [1-6]. The most widely
studied adsorbent is activated carbon, while the application of
other adsorbent materials for metal ion removal is now receiving
considerable attention.

Hydroxyapatite [Cajp(PO4)s(OH)z2, HAp], amajor inorganic
constituent of bone, teeth, and natural source of phosphate, has
a high remaoval capacity for divalent heavy metal ions [7.8].
Immobilization of lead (Pb>*) ions on synthetic or natural HAp
is becoming a promising way for remediation of wastewater and
soil. Such ability of HAp has stimulated intensively research to
understand the mechanisms involved in removal of Pb** ions in
aqueous soluticn by synthetic apatite and to evaluate the envi-




sl application of this material [9-13]. HAp is usually
powder or calcined pellets form. To improve its appli-
r the purification of wastewater, there is a necessity (o
e HAp powders or pellets into certain forms,
; composite materials composed of polymers and
s is an emerging method. Alhakawati and Banks have
‘hydrophilic urethane, Hypol 2002 (Dow Chemi-
. UK branch), to synthesize composites with the
of Ascophyllum nodosum, and claimed their poten-
removal of copper from agueous solution [14].
ne (PU) foams with other adsorbents such as activated
olite, and pillared clay have been also synthesized
dsorption characteristics have heen investigated [15].
wide application of PU foams as an immabilization
have been no reports on the immobilization of HAp
ns and their adsorption behaviors of heavy metals
solution.
udy, we prepare HAp/PU composite foams with two
p contents and investigate their removal capability
aqueous solutions with various initial Pb%* ion
s and pH values of 2-6. The effects of initial Pb2*
tion and HAp content on the removal capability
site foams are investigated based on the pseudo-
kinetic model. Removal mechanism of Pb?* ions
site foams in the aqueous solutions with different
scussed. Finally, equilibrium removal performance
composite foams is analyzed by using Langmuir

ration of HAp/PU composite foams

#PU composite foams were synthesized by using Hypol
and deionized water, Hypol 3000 (Dow Chemi-
is a PU prepolymer with urethane groups in the
 and isocyanate groups at their chain cnds. HAp
03)5(OH),} powder was supplied by SamJo Industry
ea). HAp wasimmobilized into polyurethane foam
hnique reported in the literature [14]. Typically,
prepolymer (8 g) and HAp (4 or 8 g) were mixed
to make composites with two different HAp con-
and 50 wt.%. Subsequently, the deionized water of
d, The weight ratio of Hypol to water, a crucial
*ncing the final morphology of PU composite foams,
to be 1, The mixtures were then stirred vigorously
til homogeneity was achieved. After forming the sta-
4 Structures, HAp/PU composite foams were allowed
dry at 80 °C for 24 h in vacuum oven, The foaming
feactions during manufacturing HAp/PU composites
oWn in the literature [16]. HAp/PU composite foams
Al Cut into uniform size of 2-3 mm.

mova of Pb** ions by HAp/PU compesite foams

! performance of Pb** ions by HAp/PU composite
S Investipated by monitoring the change of Pb?* jon
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concentration in the aqueous solution. In order to determine
absorption isotherms, HAp/PU composite foam of 0.5 £ was put
into the aqueous solution of 500 ml with various initial Pb>* jon
concentrations and pH values. The initial concentration of Ph2*
ions in the aqueous solution was controlled to be 44—184 mg/l by
diluting the Pb?* 1000 mg/! standard solution (Kanto Chemical
Co., Ltd.) with deionized water. The pH value was adjusted to be
from 2to 6 by adding 0.1 M NaOH solution. All the experiments
were carried out at a room temperature and an agitation speed
of 300 rpm for 48 h.

The change of Pb** ion concentration in the aqueous solution
was measured by using an atomic adsorption spectrophotometer
(AAS, SHIMADZU AA-6701F). Before the measurement, a
linear calibration curve between the Pb* ion concentration and
the absorption intensity was obtained for quantitative analysis.

The morphological and compositional analyses of HAp/PU
composite foams were carried out from selected samples
using a scanning electron microscope (SEM, JEOL JSM-6380)
equipped with an energy dispersive X-ray spectrometer (EDS).

3. Results and discussion
3.1. Morphology of HAp/PU composite foams

The SEM images of HAp/PU composite foams with differ-
ent HAp content of 20 and 50 wt.% are shown in Fig. 1. Both
composile foams synthesized exhibited well-developed open
pore structures, independent of HAp content (left-side images of
Fig. 1). These open pore structures are expected to provide the
enhanced accessibility of Pb* ions in aqueous solutions to HAp
immobilized in the composites. The right-side SEM images of
Fig. 1 also reveal that HAp particles in the composite foam with
20 wt.9% HAp content are more uniformly dispersed in smaller
sizes, compared with the composite with 50 wt.% HAp.

3.2. Effect of HAp content in composite foams

The content of HAp in HAp/PU composite foams is one of
important parameters for affecting the removal amount of Pb?*
ions in aqueous solutiens. For the composite foams with 20 and
50 wt.% HAp contents, the removal performance of Pb%* ions
from the aqueous solution with the initial Pb** concentration of
184 mg/l at pH 5 was investigated. The time-dependent amount
(q; in mg/g) of Pb** ions removed by the composite foam was
calculated using following expression:

_ G-V
q = B

where Cpis the initial Pb®* ion concentration (mg/1), C the resid-
ual Pb%* ion concentration (mg/1), V the volume of the solution
(), and B is the weight of the HAp/PU composite foam (g). The
ultimate amount of Pb** ions removed by the composite foan
with 50 wt.% HAp content is much higher than that of the one
with 20 wt.% HAp, as can be seenin Fig. 2. Itis because the com-
posite with higher HAp content provides the larger adsorption
pores for Pb?* ions from aqueous solutions,

(1)




— 300 M

oval kinetics of Pb?* jons by the composite foams
0 analyzed based on the pseudo-second order kinetic
which is expressed as [17-19]:
i
e

)]

the contact time (h), g, and g. the amounts of Pb™*
atan arbitrary time £ and at equilibrium (mg/g), respec-
1id & is the rate constant (g/mg h). Plots of /g, versus ¢
oval kinetics of Pb* ions by the composite foums
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Fig. 1. SEM images of HAp/PU composite foamns with different HAp content: (A) 20 wi.%: (B) 50 wi.%.

are shown in Fig. 3. As results, the g. values for the composites
with 20 and 50 wt.% HAp contents are estimated Lo be 94.6 and
170.2 mg/g, respectively, and the k values are 2.97 x 10~3 and
6.4 x 10~* g/mgh. It indicates that the removal rate of the com-
posite containing 20 wt.% HAp is somewhat faster than that of
the composite with 50 wt.% HAp. This result is expected to be
from the fact that HAp particles in the composite with 20 wt.%
HAp are more uniformly dispersed than those in the composite
with 50wt.% HAp and that Pb®* ions in aqueous solution are
easily accessible to the smaller HAp particles in the composite
foam with 20wt.% HAp.
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r/ ®  HAp(50 wi%)/PU foam
®  HAE(20 wt%)/PU foam
10 20 30 40 50

Time (h)

time-dependent amount (g;) of Pb** ions removed by the HAp/PU
foums with different HAp content in aqueous solution with initial
centration of 184 mg/l at pH 5.

D2
01 p ® HAp(50 wi%}/PU foam
m  HAp(20 wi%)/PU foam
a G i 1 1 1
0 10 20 0 40 50
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Fig. 3. The removal kinetics analysis of Pb™* ions by the HAWPU composite
foams with different HAp content.
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dent amount (¢,) of Pb™ ions removed by the HAp
foam in aqueous solutions with various initial Pb2* ion
of 44-184mg/l at pH 5.

liniticl PE** ion concentration

of the initial Pb®* ion concentration (44, 88, 122,
| on the removal performance of the composite
HAp content was investigated. The pH value
lutions was controlled to be 5. The ultimate
removed by the composite foam increased
nitial concentration of Pb?* ions in aqueous
184 mg/l, as can be seen in Fig. 4.

ciency of Pb™ ion by the HAp/PU com-
i the aqueous solutions with various Pb2* ion
i5 calculated based on following equation:

Co—C
Co

ency (%) = x 100 (3)

ig. 5, the ultimate removal efficiency of the
i aqueous solutions with initial Pb2* ion con-
. 88, and 122mg/l was close to 100%, while
" ion concentration of 184 mg/l was approx-
efore, it is expected from the above results
moval amount of Pb** ions by the compos-
% HAp contentis between 122 and 184 mg/l.
ththe above result that the estimated equilib-
ount (¢.) of the composite with 50 wt.% HAp
2.

Pseudo-second order kinetic model of Eq.
the initial Pb®* concentrations of 44, 88, 122,
calculated to be 4.88 x 103, 1.68 x 1073,
64 % 10~3 g/mg h, respectively. It demon-
“toval rate of the composite containing 50 wt.%
With increasing the initial Pb** ion concentra-
™4 solution, This result reveals that the kinetic
°*S With increasing the initial concentration of
€his consistent with the result reported in the
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Fig. 5. The time-dependent removal efficiency of Pb% jon by the HAp
(50 wt.%)/PU composite foam in aqueous solutions with various initial Pb2*
ion concentrations of 44~184 mg/l at pH 5.

3.4. Effect of pH in aqueous solution

The pH value in the agueous solution on the removal capac-
ity of Pb®* ion by HAp/PU composite foams is an important
parameter to be considered. Removal experiments at various pH
values of 2-6 were conducted for the HAp/PU composite foam
with 50 wt.% HAp content in aqueous solution with the initial
Pb?* ion concentration of 200 mg/l. The amount (Gr=agn) of Pb?*
ions removed by the composite foam after 48 h contact time was
measured and compared, as can be seen in Fig. 6. The amount
of Pb** ions removed by the composite foam with 50 wt.% HAp
was quite similar (~140 % 10 mg/g), independent of pH value
of aqueous solution, except for pH 4.

Two dominant mechanisms for the ability of HAp to take up
divalent cations have been proposed [9-11,13]. The first mech-

200

E 100}
=
5 ¢
-3
m-
u 1 L i | ) 4 I
1 . 3 4 3 6 7

pH

Fig. 6. The effect of pH on the amount (gyuss1) of Pb?* ions removed by the
HAp (50 wt.%)/PU composite foam in aqueous solution with the initial Pb> ion
concentration of 200 mp/1 after 48 h contact time.
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3 is the adsorption of Pb?* ions on the HAp surfaces and
ving ion exchange reaction between Pb®* jons adsorbed
ions of HAp [9]. This ion exchange reaction mecha-
s expressed us:

504)6(OH) + xPb*
it +Ca 10-xPBx(POy4)s(OH);

nd mechanism is the dissolution of HAp in ague-
pon containing Pb?* jons followed by precipitation
ypyromorphite (Pb1o(POs)s(OH),, HPy], i.e.. the
precipitation mechanism [10,11], which is written

Cao(PO4)s(OH); + 14H*
s 10Ca*" + 6H2PO: ™ +2H,0
jtation :  10Pb>* + 6H,PO4 ™ 4 2H,0
H™ + Pb1o(POa)s(OH)2 (5)

er to investigate the removal mechanism of Pb%* ions
PU composite foams in aqueous solutions at various
, SEM images of the composite foam surfaces after
ion removal expenments were obtained, as shown in
overall morphology of the composite foams was
be remained unchanged even after the experiments
images of Fig. 7), while the local surface morphol-
posites is quite different, depending on pH value
s solutions (right-side images of Fig. 7). At pH 2-3,
aped precipitants were observed on the composite
whereas the surface morphologies (domain structures
in PU matrix) of the composites experimented ar pH
linost identical with that of the original composite foam.
ates that the removal mechanism of Pb** ions by the
composite foams is quite aifferent berween pH 2-3

(C]
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and pH 5-6 The magnified SEM image (Fig. 8A) and associated
EDS spectrum (Fig. 8C) of the composite foams experimented at
PH 2-3 support the fact that HAp is firstly dissolved out from the
composite foams and, simultaneously, the needle-shaped HPy
crystallites are formed and precipitated on the composite sur-
faces. On the other hand, the SEM image (Fig. 8B) and related
EDS spectrum (Fig. 8C) of the composite foams experimented at
pH 5-6 confirm that the domains dispersed in the PU composite
matnx are mostly composed of HPy. It reveals thar the removal
of Pb* ions by the composite foams at pH 5-6 stems from the
mechanism of adsorption of Pb** ions on the HAp/PU compos-
ite surfaces and following ion exchange reaction betwean Ph*
ions in aqueous solutron and Ca® ions of HAp in the compos-
ites. On the other hand, it is conjectured thar the lowest removal
amount of Pb** ions at pH 4 (Fig. 6) is caused by the compe-
tition of above two removal mechanisms, i.e.. HAp is hardly
dissolved our owing to relatively low concentation of H* ions
and the jon exchange reacton from HAp 1o HPy is also limuted
by the compering concentrations of H* and Ph?* ions. This is
confirmed that the magnified SEM image (right-side of Fig. 7C)
of the composite foam experimented at pH 4 is rather different
from the images of the composite foams experimented at pH 2-3
and 5-6. Overall, it is valid to conclude that the removal mech-
anism of Ph>* ions by the HAp/P1 composite foans is varied.
depending on the pH value in aqueous solution: the mechanism
of dissolution of HAp and precipitation ot HPy is dominant at
lower pH 2-3, the mechanism of adsorption of HAp and ion
exchange between Ca®* of HAp and Pb™ in agueous solution
prevails at higher pH 5-6, and twomechanisms compete at pH 4.

3.5, Adsorption isotherm

The equilibrinm adsorption performance of the HAp/PU
composite foam with S0wt.% HAp content for Pb®* ions was

Intensily (8. u.)

(C)
S P i
EBefore
experiment
Pb
[ Experimented
w at pH 2~3
Experimented
at pH 5~6
1 ] 1 1

Energy (keV)

ed SEM images (A and B) and associated EDS spectra (C) of HAp (50 w.%)/PU composite foams experimented at various pH values of 2-3 and 5-56,
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Slope = 0.0477
Intercept = 6.6478 X 10°
r=0995

1 L 1 1 1 ] 1

10 20 30 40 50 80 70 80
C, {mgh)

puir isotherm plot for the wdsorption of Pb ions by HAp
composite foam in agueous solution at pH 5.

pH 5 where the ion exchange mechanism s domi-
removal of Pb** ions from aqueous solution, Several
tical adsorption isotherm models have been developed
vely express the relationship between the extent of
the residual solute concentration. The most widely
is the Langmuir adsorption isotherm model, which
as [20]:

Ce

Gmax

o+ (6)
mg/l) is the equilibrium concentration, g, (mg/g) the
dsorbed per amount of adsorbent (mg/1), K. the Lang-
ibrium constant (Vmg), and gmax is the amount ot
adsorbed per unit mass of adsorbent corresponding to
monolayer coverage. The linear plot of C./g. agamst
on the Langmuwir equation gives a fairly good linear ot
orption isotherms for the composite toam, as shown
yielding gmay (150 mg/g) and K, (0.139 Vmg) from
intercept, respectively. The gmax of 150 mg/g for
osite with 50 wi.% HAp estimated by ‘the Langmuir
model matches well with the value (170 mg/g) obtained
o-second order kinetic model, within the experimen-

On capacities of PB** fons by various adsorbents

Qmax (M) Reference
312 13]
lide/bentonite composite 33.12 21
ide/zeolite composite 58 [21)
an membranes 68.81 122]
87 15
ated carbon 952 lﬁj
- 1153 121
FWPU composite foam 150 This work

4 phosphate 155 (2
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tal error. When the gmax value of the HAp/PU composite foam
with 50 wt.% HAp was compared with those of other adsorbents
(Table 1), the adsorption capability of the composite foam with
50wt.% HAp content for Pb>* jons was found to be compara-
bie or even superior o others adsorbents. This result reveals that
HAp/PU composite toams are effective adsorbents for Pb2 ions
from wastewater.

4. Conclusions

The aim of this work was to synthesize HAp/PU composite
foams and to investigate their removal ability of Ph** ion from
aqueons solutions with a variety of initial Pb®" jon concentra-
tions and pH values of 2-6. we have prepared twa composite
foams with 20 and 50 wt.% HAp contents, which displayed
well-developed open pore siructures. The composite foam with
50 wt.% HAp exhibited the higher removal efficiency of Ph2*
ions due to higher adsorption capacity, compared to the com-
posite with 20 wt.% HAp, and showed the slower removal
kinetics owing to the less uniform dispersity of HAp parti-
cles. The removal rate of Pb** ions by the composite foum
with 50 wt.% HAp content was slower with increasing the ini-
tial Pb™* ion concentration in aqueous solutions. The removal
mechanism of Pb** ion was very sensitive to the pH value
in aqueous solution, although the removed amount of Pb*
ions at different pH value was nearly same within the exper-
imental errar. The mechanism of dissolution of HAp in the
composite foam and precipitation of HPy was dominant at
Jower pH 2-3, the mechanism of adsorption of Pb®* ions on
the composite surface and ion exchange reaction berween Ca=~
of HAp ana Pb** 1ons in aqueous solution was dominant at
higher pH 5-6, and neither remaval mechanisms was domi-
namt at pH 4. The equilibrium removal process of Ph** ions
by the composite foam at pH 5 was described well with the
Langmuir isotherm model. The maximum adsorption capac-
ity of the composite foam with 50 wt.% HAp was found to
be 150mg/g, indicating that the HAp/PU composite foam is
a promising adsorbent for Pb?* jons from agueous solution at
higher pH values of 5-6 and could be used as u purifier for
wastewater,
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Removal of lead ions in aqueous solution by
Hydroxyapatite/polyurethane composite foams

S EEXSTREA b R Y Y LS ORBBARCORA A 2 AR b D

Suk Hyun Jang , Byung Gil Min , Young Gyu Jeong
Won Seok Lyoo , Sang Cheol Lee

preparcd hydroxyapatite/polyurehthane (HAp/PU) composite foams with two different HAp contents of 20 and 50 wit.% and investigated
capability of Pb** ions from aqueous solutions with various initial Pb** ion concentrations and pH values of 2-6. HAp/PU composite
s synthesized exhibited well-developed open pore structures which provide paths for the aqueous solution and edsorption sites for Pb* ions.
easing the HAp conteat in the composites, the removal capability of Pb™ ions by the composite foams increases owing to the higher
capacity, whereas the removal rate is slower due to the less uniform dispersity of HAp in composite foams. The removal rate of Pb*
0 alwwithnmmmng the initial Pb™ ion concentration in aqueous solutions, The removal mechanism of Pb* ion by the composites is
g on the pH value of agueous solution: the dissolution of HAp and precipitation of hydroypyromorphite is dominant at lower pH
of Pb* ions on the HAp/PU composite surface and ion exchange reaction between Ca®* of HAp and Pb™ in aqueous selution
higher pH 5-6, and two removal mechanisms compete at pH 4. The equilibrium removal process of Pb** ions by the HAp/PU
foam at pH 5 was described well with the Langmuir isotherm model, resulting in the maximum adsorption cepacity of 150 mg/g for the
foam with SO wt.% HAp content.
sevier B.V. All rights reserved,

rly: Adsorbent; Composite foam: Heavy metals; Hydroxyapatite: Polyurethane
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.'HB- L. SEM images of HAp/PU composite foams with different HAp content: (A) 20 wt,%; (B) 50 wt.%.
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Fig. 9. Langmuir isotherm plot for the adsorption of Pb jons by HAp
30wt.%)/PU compasite foam in aqueous solution at pH 5.
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Abstract

» have investigated adsorption of Cd?*, Cu?*, and Pb2* at pH 4-7 onto the
‘ amic synthesized from the domestic animal feces, and commercial
vdroxyl apatite.
ieh adsorptive capabilities were observed for Cd2t, Cu?*, and Pbh2* on all the
ceramics at pH 6, 7, and 5, respectively. In the adsorption of Ph2*, the
rption ability increased in following order: Synthesized apatite 2-1 >
nthesized apatite 3-1 > Synthesized apatite 4-1, Synthesized apatite 4-2,
nthesized apatite 3-2 > Synthesized apatite 1-1 > commercial Hap. The
aximal adsorption amount capacity of Cu2* on bio-ceramics increased in
je following order : Synthesized apatite 3-1 > Synthesized apatite 2-1 ,
mthesized apatite 4-2 > Synthesized apatite 4-1, Synthesized apatite 3-2 >
'-:_-;ia esized apatite 1-1 > commercial HAP. The In the adsorption of Cd2+
e adsorption ability increased in following order: Synthesized apatite 2-1 >
mthesized apatite 4-1 > Synthesized apatite 4-2 >Synthesized apatite 3-2 >
mthesized apatite 3-1 > Synthesized apatite 1-1.
dlthough hydroxyl apatite is utilized in a variety of field such as
astewater treatment, chemical and biochemical engineering, a medical
eld, and ion transmission characteristics, this material is costly.
n the other hand, processing of the test bio-ceramics was inexpensive, and
all bioceramics were able to adsorb large amounts of Pb2*. The high
rption capability of the bio-ceramics prepared from domestic animal
S is promising in the development of a novel, low-cost functional
erials.
0m these result, it is concluded that heavy metal removal using
lomaterials would be an effective method for the economic treatment of
fastewater.
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